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Antenna Feedhorn Software Upgrade

P. D. Potter *
Radio Frequency and Microwave Subsystems Section

The HYBRIDIORN compurer program was developed in 1973 1o serve as an item of’
general purpose antenna feedhorn design and analvsis software, and has been utilized
extensively since that time for this purpose, The 1973 formudation contains a small flare
angle approximation which is subject to question for designs such as the Williams S- and
Xeband feedhorn. Additionally, the original formulation did not allow azimuthal variation
indices other than unity, The HYBRIDHORN program has been recently upgeraded 1o
correct both of these deficiencies. A new large flare angle formdation has been found
which appears to have escaped the attention of others, In the upgrade, all of the major
program clements have been converted to Univae 1108 compatible structired Fortran
(SI'TRAN) for case of software maintenance. This article describes the small and laree
angle formudations and presents some sample muomerical resulis.

I. Small Flare Angle Formulation
The small tlare angle approximation is discussed in Ref, 1. The formutation is based on the fact that the fields on a spherical

cap in the horn aperture are well approximated by the standard cyvtindrical (Bessel function) ficlds (Ref, 2).

Figure 1 shows the horn geometry, Clarricoats (Ref. 3) derived the cylindrical ficlds for the case of arbitrary index, mr, of
azimuthal variation. For linear polarization, the following field expressions apply in the horn flare:
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The assumed circumferential grooves in the horn wall require that the azimuthal electric field components be zero at the wall
surface. Thus. from Eq. (1d).

where

BAL,,,, is lhc mode balance: at the balance frequency it is +1 for the normally-used HE,,
modes. At the balance frequency, the horn wall presents infinite longitudinal reactance (£,
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maodes and =1 for the £41,,
divided by #,,, ) and radiation

patterns result which have essentially equal E- and H-plane patterns,

By consideration of the boundary conditions, the characteristic equation, which may be solved for X, .
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is obtained as:
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GROOVE = groove depth

An important special case of the above equations is that in which the groove depth approaches zero, i.e.. the hor has smooth
walls, For this case BAL,,, either approaches a positive zero, and HE,,,,, modes become T, modes, or B:A L, , approaches
négative infinity and £/, modes become TE,, , modes. The smooth wall case is thus easily accommodated by the above

cquations,

mn mn

The final desired outputs of the HYBRIDHORN program are the £- and H-plane polar radiation patterns, given the frequency
of operation, horn geometrical parameters and mode excitation amplitudes and phases. By circular symmetry and resulting
orthogonality, the azimuthal radiation pattern dependence is given by the selected order. m. of the sinusoidal/cosinusoidal
variation. The tollowing steps are performed to compute the radiation patterns:

(1) Given the throat region mode phascs, the aperture mode phases are determined by numerical solution of (7) at points in
the horn Nare and numerical integration of §,, .

() The aperture cap ficlds are determined from Eq. (1¢) and Eq. (1d).

(3) The radiated far-ficlds are determined by a near-ficld spherical wave expansion (SWE) about the horn vertex of the
aperture cap fields (external ficlds assumed zeto).

(4) The SWE fictds are normalized and phasc-transtated to a specified reference point on the horn axis.

Equations (1a-11) are formal solutions to Maxwell's equations in cylindrical coordinates with the assumed anisotropic wall
boundary condition: for this cylindrical solution. x is the radial coordinate times K, . In 1963 Ludwig (Ref. 4) showed that for
a spherical peometry such as the horn flare, Eqs. (1a-10) closely approximate the true ficlds it the radial ¢vlindrical coordinate is
replaced by the are length (see Eq. (3). (6) and (9) above). This approximation. valid for small flare angles such as those typically
utilized in a Cassegrain antenna feedhorn, was discussed in detail by Narasimhan and Rao (Ref. 2). This approximation was used
in the original HYBRIDHORN formutation (Ref. 1) and has shown good agreement with experimental data for small (less than 20
degrees) Mare angle horns. One of the purposes of the HYBRIDIORN upgrade was to provide the capability of accurate large tlare
angle caleutations, This more rigorous formulation is described in the following section.

Il. Large Flare Angle Formulation

The allowable fields in an infinite conical waveguide follow directly from Maxwell’s equations. Ina source-free isotropic region
and assuming ¢ /@ ! time dependence, Maxwell’s equations are:
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Since divergence (curl) is identically zero, from Eq. (11¢) H may be expressed as the curl of a vector (known as the vector
potential), A.:

H, = (—L—)-(v X Ag) (12

Equating (11b) and (12a). and recognizing that curl (grad) is identically zero. the result is:
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where ¢,. is known as the scalar potential.
Similarly, using Eq. (1 1a) and (11d),
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By combining Eq. (12a4) and (12b) with (11a). and Eq. (13a) and (13b) with (11b), the two vector wave equations are obtained:
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As particular solutions of (14a) and (14b), consider £~ (TA!) and /f - (TFE) waves:
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From Eqs. (120) and (13a) it is clear that Eqs. (15a) and (15b) result in waves with only transverse magnetic and transverse
clectric fields, respectively.

The scatar potentials, ¢, and @, are not independent of the vector potentials Ag and A, and may be selected arbitrarily. The
following selections lead toconvenient results:
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Expressing Eqs. (14a) and (14b) in spherical coordinates and using (16a) and (16b), the following scalar wave o |umun~ are

oblained:
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Equations (17a) and (17b) are readily solved by the method of separation of variables. For outward traveling waves with the polar
axis included in the region,
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where a,,, 0 b,,,,, are T and TE wave amplitudes
h3Y (kr) = the fractional order, outward spherical Hankel function (Refs. § and 6)

P (cos0) = fractional degree associated Legendre function of the first kind (Refs. 5.7)

Equations (18b), (12a) and (11a) can be used to find the expressions for the TM field components, and Eqs. (18a). (13a) and
(11b) can be used to obtain the TE field components. The resulting expressions, previously published by Borgnis and Papas
(Ref. 8) are the appropriate expressions for the fields in an infinite, smooth wall conical waveguide. For anisotropic impedance
walls, as in a hybridmode horn, hybrid modes may be defined which are combinations of TM and TE modes. Thus, the
HYBRIDHORN ficlds are expressed as:
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With the assumed circumferential grooves, the boundary conditions are:
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The technique of separating variables, which allowed expression of Eqs. (17a) and (17b) as two sets of three total differential
equations with solutions as Eqs. (18a) and (18b), requires that Eqs. (22) and (23) be satisfied for all values of kr in the horn. The
spherical Hankel function 24?)(kr) and the radial derivative function, 3/dr [rh{*)(kr)] are both complex and bear a differing re-
tationship to cach other as a function of kr. 1tis thus clear that Eq. (22) cannot be satistied by a single /£, , or EH,, , mode, bwt
rather a summation of modes must be used, as shown. The literature contains an extensive discussion of this problem (Refs. 9 and
10). Clearly, some approximation must be invoked 1o arrive at the single mode characteristic equation analogous to (7} and the
balance condition znalogous to (8). The approximations appearing in the literature are both numerically unjustitied and lead 1o
equations which cannot be directly compared to the small lare angle formulation discussed in the previous section,

A neat solution to the above dilemma is obtained by using a result derived by Ludwig (Ret’ 4). Ludwig showed that it
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where

| ! aﬁmn s
ERROR = ?'m"a—(r;)— (27)
The normalized propagation constant B,,,, differs significantly from unity for typical horn geometries, but the change of Bomn
with kr is slow, leading 1o a small value for the error term. Figure 2 is a plot of (1 - §,,,,,). [ERROR| and [ERRORI/(1 - 8,,,)
for kr from | to 100 and » from 1 to 20. The approximation of retaining the nonunity value for §,,,. but neglecting the
error term, is seen 1o be excellent; the relative magnitudes of the error and (1 - B;m,) terms are seen to decay as approximately
1/(kr). Thus, the approximation is made that,
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A comparison of Eqs. (29a) to (290 with Eqs. (12) to (11) shows that the approximation in Eq. (28) yields expressions for the
ficlds in a large Nare angle horn which are identical in form to those for the small flare angle (Bessel) formulation. The
mathematical equivalence between the associated Legendre function and the Bessel function is covered by Ludwig (Refl. 4),
Direct numerical comparisons hetween the two formulations will be discussed in the following section,

With the approximation in Eq. (28), the horn boundary conditions may now be satisfied individually by each mode, and
result in the following relationships:
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Equation (32) implies that the wall admittance must be a specified function of kr. The amount of mode conversion which
would occur with constant depth grooves in the horn flare has not been investigated but, based on previous experimental
results, is expected to be small, In the HYBRIDHORN program. a constant groove depth and the radial line impedance
formula (Eq. 8) are assumed. With the relationship
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The characteristic equation is obtained from (31) and (32) as:
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The upgraded TIYBRIDHORN programi allows computations to be performed using either the small tlare angle (Bessel)
formulation, given in Section 1 above, or the large flare angle (Legendre) formulation, given in this section. The following
section discusses numerical results.

. Numerical Results and Conclusions

The upgraded HYBRIDHORN program allows user selection of either small flare angle (Bessel) or large flare angle
(Legendre) computations. The former involve less machine time and are thus normally preferable. For the dominant HE
mode, direct comparisons were made as a function of flare angle. Table U gives the horn geometrical parameters and the
results of this comparison, The general conclusion is that the Bessel (small Nare angle) option may be safely used for horn
flare angles less than 20 degrees. Numerical experiments for a 20 degree flare angle were also performed for higher-order
modes, azimuthal variations from m =0 to m = 3, and for both smooth and corrugated horn walls: a similar conclusion was
obtained tfrom these experiments,

The relative pattern insensitivity to formulation selection is a somewhat negative and surprising result, but does lend great
confidenice 1o the correctness of both formulations, and also settles the question of whether the Bessel (old) formulation is
sutticiently accurate for typical DSN feedhorn configurations.

In the process of upgrading the HYBRIDIORN program to handle both formulations and the case of m = 1, the cading
wis generally improved, including conversion of all major program elements to structured Fortran (SFTRAN, version 2). This

coding improvement should facilitate (uture program maintenance,
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Table 1. HE,, mode flare angle comparisons?

Beasel pattern

i} BAL F(0,) F, (cos0 ) IN
Ilare " 1 mLn e ! " N crrot relative
Angle (Aperture cap) (Aperture cap) (Apertute cap) (Aperture cap) 1o Legendre at
Bessel Legendre Bessel Legendre Bessel Legendre Bessel Legendre =0 dB level, 0B
20° 99969 99969 1.06386 1.06347 -.93968 ~.9400) A1102 A1191 0.1
40° 99973 99971 1.05999 1.05848 -94318 -94448 10439 10748 0.3
60° 99978 999758 1.05386 1.05072 «.94869 -95149 09188 10024 0.7
70° 99981 99977 1.05008 1.04602 -95213 -.95879 08734 09559 1.0
A'requency = 8418 Gilz
Aperture diameter = 106.68 em (42 in.)
Groove depth = $,0927 cm (2.005 in.)
1.0
HORN EQUIPHASE
VERTEX SURFACE
_///-—- [} ) 0.1
- - ————— + g
INPUT o N ¢ HORN
WAVEGUIDE MOUTH
MODE FLARE ANGLE 6, 8
GENERATOR SPHERICAL . ¢
APERTURE >
CYLINDRICAL ;'&',TOFN"A" Car
PHASING SECTION
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Fig. 1. Horn geometry
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Fig. 2. Large flare angle spproximation errors



